Warning: Undefined array key "cacheTitle" in /var/www/html/uzcms/goldstarav.com/index.php on line 1141
 갤럭시 바카라 - 신뢰할 수 있는 사이트
资源与环境微生物技术

沈煜

教授
博士/硕士生导师
0532-58632401
个人简介 科研项目 学术论文 其他介绍

教育背景

博士 2000.9-2005.6 bet365 코리아 微生物学

本科 1996.9-2000.6 bet365 코리아 微生物学



工作经历


起止时间 单位名称 专业技术职务

2021.9-至今 bet365 코리아 教授

2015.9-2021.8 bet365 코리아 副教授

2009.6-2015.8 bet365 코리아 讲师

2009.9-2010.8 瑞典Chalmers技术大学 博士后

2006.7-2009.5 河南天冠企业集团 博士后

2005.7-2006.6 江南大学 讲师



研究方向

1.代谢途径工程和合成生物学

2.酵母碳代谢调控机制

3.酵母对环境胁迫的耐受及应答机制

1.国家自然科学基金面上项目,从营养和胁迫信号通路的角度研究葡萄糖后继效应机制,32170039,2022.01-2025.12,主持

2.国家重点研发计划项目子课题,高效转化木质纤维素水解糖产乙醇的重组酿酒酵母菌株的选育,2021YFC2101300,2021.08-2024.7,主持

3.国家重点研发计划项目课题子课题,纤维素乙醇关键技术之C5C6共利用酵母的乙醇发酵性能优化,2018YFB1501702-4,2019.1-2022.12,主持

4.国家自然科学基金面上项目,蛋白乙酰化修饰调节酿酒酵母碳源代谢机制的研究,31770046,2018.1-2021.12,主持

5.山东省自然科学基金重大基础研究项目计划,产酪醇酿酒酵母细胞工厂的构建和优化,ZR2018ZB0209,2018.6—2020.12,主持

6.山东省重大基础研究项目子课题,甘薯生物质制备新型食品增味剂关键技术研发及产业化,2017CXGC1105,2018.04- 2019.12,主持

7.国家自然科学基金面上项目,酿酒酵母葡萄糖感应系统及代谢后继效应干扰木糖转化效率的机制研究,31470166,2015.1-2018.12,主持

8.国家高技术研究发展计划(863计划)子课题,纤维素酶和木糖醇高效生产菌株的构建,2014AA021903,2014.1-2016.12,主持

9.车用生物燃料技术国家重点实验室开放课题,高抗逆性、高木糖转化工业酿酒酵母的选育及过程控制的研究,2014.7-2016.6,主持

10.国家能源局项目子课题,万吨级纤维素乙醇生产关键技术研究及示范-4,NY20130402,2013.1-2015.12,主持

11.国家自然基金面上项目,相关代谢关键酶控制强化对木糖代谢酿酒酵母工程菌影响的研究,30970091,2010.1-2012.12,主持

12.国家科技部国际科技合作项目,第二代燃料乙醇生产集成技术研究,2010DFA32560,2010.01-2012.12,参加

13.bet365 코리아自主创新项目,酿酒酵母耐木质纤维素预处理原料毒性的机理研究,2010.6-2012.12,主持

通讯/第一作者论文(上标1为共同第一作者,上标*为通讯作者)

1.He, Y., Li, H., Chen, L., Zheng, L., Ye, C., Hou, J., Bao, X., Liu, W.,Shen, Y*.2021. Production of xylitol bySaccharomyces cerevisiaeusing waste xylose mother liquor and corncob residues. Microb Biotechnol. 5-year IF=6.559

2.Liang, Z., Wang, X., Bao, X., Wei, T., Hou, J., Liu, W.,Shen, Y*.2021. Newly identified genes contribute to vanillin tolerance inSaccharomyces cerevisiae. Microb Biotechnol, 14(2), 503-516. 5-year IF=6.559

3.Guo, W., Huang, Q., Feng, Y., Tan, T., Niu, S., Hou, S., Chen, Z., Du, Z.Q.*,Shen, Y.*,Fang, X*. 2020. Rewiring central carbon metabolism for tyrosol and salidroside production inSaccharomyces cerevisiae. Biotechnol Bioeng. 5-year IF= 4.630

4.Wu, M., Li, H., Wei, S., Wu, H., Wu, X., Bao, X., Hou, J., Liu, W.,Shen, Y*.2020. Simulating Extracellular Glucose Signals Enhances Xylose Metabolism in RecombinantSaccharomyces cerevisiae. Microorganisms, 8(1). IF= 4.128

5.Zheng, L., Wei, S., Wu, M., Zhu, X., Bao, X., Hou, J., Liu, W.,Shen, Y*. 2020. Improving Xylose Fermentation inSaccharomyces cerevisiaeby Expressing Nuclear-Localized Hexokinase 2. Microorganisms, 8(6). IF= 4.128

6.Wei, S., Bai, P., Liu, Y., Yang, M., Ma, J., Hou, J., Liu, W., Bao, X.,Shen, Y*.2019. A Thi2p Regulatory Network Controls the Post-glucose Effect of Xylose Utilization inSaccharomyces cerevisiae. Front Microbiol, 10, 1649. 5-year IF=6.320

7.Wei, S., Liu, Y., Wu, M., Ma, T., Bai, X., Hou, J.,Shen, Y.*,Bao, X. 2018. Disruption of the transcription factors Thi2p and Nrm1p alleviates the post-glucose effect on xylose utilization inSaccharomyces cerevisiae. Biotechnol Biofuels, 11, 112. 5-year IF= 6.485

8.Wang, X., Liang, Z., Hou, J.,Shen, Y.*,Bao, X*. 2017. The Absence of the Transcription Factor Yrr1p, Identified from Comparative Genome Profiling, Increased Vanillin Tolerance Due to Enhancements of ABC Transporters Expressing, rRNA Processing and Ribosome Biogenesis inSaccharomyces cerevisiae. Front Microbiol, 8, 367. 5-year IF=6.320

9.Hou, J.1,Shen, Y.1, Jiao, C., Ge, R., Zhang, X., Bao, X. 2016. Characterization and evolution of xylose isomerase screened from the bovine rumen metagenome inSaccharomyces cerevisiae. J Biosci Bioeng, 121(2), 160-5. 5-year IF= 2.746

10.Li, H.1,Shen, Y.1, Wu, M., Hou, J., Jiao, C., Li, Z., Liu, X., Bao, X. 2016. Engineering a wild-type diploidSaccharomyces cerevisiaestrain for second-generation bioethanol production. Bioresour Bioprocess, 3(1), 51. IF= 4.578

11.Wang, X., Liang, Z., Hou, J., Bao, X.*,Shen, Y*. 2016. Identification and functional evaluation of the reductases and dehydrogenases fromSaccharomyces cerevisiaeinvolved in vanillin resistance. BMC Biotechnol, 16(1), 31. 5-year IF= 3.292

12.Li, H., Wu, M., Xu, L., Hou, J., Guo, T., Bao, X., &Shen, Y.*, 2015. Evaluation of industrialSaccharomyces cerevisiaestrains as the chassis cell for second-generation bioethanol production. Microb Biotechnol, 8(2), 266-274. doi: 10.1111/1751-7915.12245 (IF 3.991)

13.Wang, C., Bao, X., Li, Y., Jiao, C., Hou, J., Zhang, Q., . . .Shen, Y.*. (2015a). Cloning and characterization of heterologous transporters inSaccharomyces cerevisiaeand identification of important amino acids for xylose utilization. Metab Eng, 30, 79-88. doi: 10.1016/j.ymben.2015.04.007 (IF 8.201)

14.Wang, C., Bao, X., Li, Y., Jiao, C., Hou, J., Zhang, Q., . . .Shen, Y.*. (2015b). Data set for cloning and characterization of heterologous transporters inSaccharomyces cerevisiaeand identification of important amino acids for xylose utilization. Data Brief, 4, 119-126. doi: 10.1016/j.dib.2015.05.005

15.Shen, Y., Li, H., Wang, X., Zhang, X., Hou, J., Wang, L., . . . Bao, X*. (2014). High vanillin tolerance of an evolvedSaccharomyces cerevisiaestrain owing to its enhanced vanillin reduction and antioxidative capacity. J Ind Microbiol Biotechnol, 41(11), 1637-1645. doi: 10.1007/s10295-014-1515-3 (IF 2.81)

16.Xu, L.1,Shen, Y.1, Hou, J. , Tang, H., Wang, C., & Bao, X*. (2014). Promotion of extracellular activity of cellobiohydrolase I fromTrichoderma reesei by protein glycosylation engineering inSaccharomyces cerevisiae. Curr Synthetic Sys Biol 2(2), 1-6. doi: 10.4172/2332-0737.1000111

17.吴宏宇,吴显伟,赵建志,鲍晓明,侯进,王林风, . . .沈煜*. (2014).蛋白质质量控制系统在增强酿酒酵母耐热性中的作用及机制.生物过程, 4, 7.

18.Shen, Y., Hou, J., & Bao, X*. (2013). Enhanced xylose fermentation capacity related to an altered glucose sensing and repression network in a recombinantSaccharomyces cerevisiae. Bioengineered, 4(6), 435-437. doi: 10.4161/bioe.25542 (IF 1.87)

19.Wang, C.1,Shen, Y.1, Hou, J., Suo, F., & Bao, X*. (2013). An assay for functional xylose transporters inSaccharomyces cerevisiae. Anal Biochem, 442(2), 241-248. doi: 10.1016/j.ab.2013.07.041 (IF 2.243)

20.Peng, B.1,Shen, Y.1, Li, X., Chen, X., Hou, J., & Bao, X*. (2012). Improvement of xylose fermentation in respiratory-deficient xylose-fermentingSaccharomyces cerevisiae. Metab Eng, 14(1), 9-18. doi: 10.1016/j.ymben.2011.12.001 (IF 8.201)

21.Shen, Y.1, Chen, X.1, Peng, B., Chen, L., Hou, J., & Bao, X*. (2012). An efficient xylose-fermenting recombinantSaccharomyces cerevisiaestrain obtained through adaptive evolution and its global transcription profile. Appl Microbiol Biotechnol, 96(4), 1079-1091. doi: 10.1007/s00253-012-4418-0 (IF 3.42)

22.Ji, L.1,Shen, Y.1, Xu, L., Peng, B., Xiao, Y., & Bao, X*. (2011). Enhanced resistance ofSaccharomyces cerevisiaeto vanillin by expression of lacA from Trametes sp. AH28-2. Bioresour Technol, 102(17), 8105-8109. doi: 10.1016/j.biortech.2011.06.057 (IF 5.651)

23.彭炳银,陈晓,沈煜*, &鲍晓明. (2011).不同启动子控制下木酮糖激酶的差异表达及其对酿酒酵母木糖代谢的影响.微生物学报, 51(7) :914-922.

24.Shen, Y., Zhang, Y., Ma, T., Bao, X.*, Du, F., Zhuang, G., & Qu, Y. (2008). Simultaneous saccharification and fermentation of acid-pretreated corncobs with a recombinantSaccharomyces cerevisiaeexpressing beta-glucosidase. Bioresour Technol, 99(11), 5099-5103. doi: 10.1016/j.biortech.2007.09.046 (IF 5.651)

参编专著

1.曲音波,鲍晓明,陈冠军,方诩,高培基,刘巍峰,沈煜,汪天虹,王禄山,赵建,《木质纤维素降解酶与生物炼制》,化学工业出版社,ISBN 978-7-122-11311-5,2011年9月

2.姜岷 曲音波 等,《非粮生物质炼制技术——木质纤维素生物炼制原理与技术》,化学工业出版社,ISBN 978-7-122-28373-3, 2018年2月


主要授权专利

1.沈煜,鲍晓明,何瑶,侯进,陈丽媛,一株酿酒酵母菌株及其在综合利用木糖母液和木糖渣产木糖醇中的应用,2020.06.29,中国,CN201710655864.0

2.鲍晓明,沈煜,李洪兴,侯进,一株共发酵葡萄糖和木糖的重组酿酒酵母菌株及其应用,2020.12.18,中国,CN2015107472417

3.沈煜,鲍晓明,霍文严,刘怀伟,一株能够代谢木糖的酿酒酵母菌株,2013.01.15,中国,CN201210088133.X

4.鲍晓明,沈煜,葛瑞蕾,Nucleic acid molecule encoding xylose isomerase and xylose isomerase encoded thereof,2016.03.16,欧盟(进入英法德),EP 2679686 B1/ Nucleic acid molecule encoding xylose isomerase and xylose isomerase encoded by the nucleic acid molecule,2013.11.19,美国,US 8586336 B2/一种编码木糖异构酶的核酸分子及其编码的木糖异构酶,2012.10.10,中国,CN201110042170.2